Copied to
clipboard

G = C525C8order 200 = 23·52

4th semidirect product of C52 and C8 acting via C8/C2=C4

metabelian, supersoluble, monomial, A-group

Aliases: C525C8, C10.4F5, C52(C5⋊C8), (C5×C10).4C4, C2.(C52⋊C4), C526C4.4C2, SmallGroup(200,21)

Series: Derived Chief Lower central Upper central

C1C52 — C525C8
C1C5C52C5×C10C526C4 — C525C8
C52 — C525C8
C1C2

Generators and relations for C525C8
 G = < a,b,c | a5=b5=c8=1, ab=ba, cac-1=a2, cbc-1=b3 >

2C5
2C5
25C4
2C10
2C10
25C8
5Dic5
5Dic5
10Dic5
10Dic5
5C5⋊C8
5C5⋊C8

Character table of C525C8

 class 124A4B5A5B5C5D5E5F8A8B8C8D10A10B10C10D10E10F
 size 11252544444425252525444444
ρ111111111111111111111    trivial
ρ21111111111-1-1-1-1111111    linear of order 2
ρ311-1-1111111i-ii-i111111    linear of order 4
ρ411-1-1111111-ii-ii111111    linear of order 4
ρ51-1-ii111111ζ87ζ85ζ83ζ8-1-1-1-1-1-1    linear of order 8
ρ61-1-ii111111ζ83ζ8ζ87ζ85-1-1-1-1-1-1    linear of order 8
ρ71-1i-i111111ζ85ζ87ζ8ζ83-1-1-1-1-1-1    linear of order 8
ρ81-1i-i111111ζ8ζ83ζ85ζ87-1-1-1-1-1-1    linear of order 8
ρ94400-1+5-1-53-5/2-1-13+5/20000-1-13+5/2-1+5-1-53-5/2    orthogonal lifted from C52⋊C4
ρ104400-1-1-1-14-10000-14-1-1-1-1    orthogonal lifted from F5
ρ114400-1-1-14-1-100004-1-1-1-1-1    orthogonal lifted from F5
ρ1244003-5/23+5/2-1-5-1-1-1+50000-1-1-1+53-5/23+5/2-1-5    orthogonal lifted from C52⋊C4
ρ134400-1-5-1+53+5/2-1-13-5/20000-1-13-5/2-1-5-1+53+5/2    orthogonal lifted from C52⋊C4
ρ1444003+5/23-5/2-1+5-1-1-1-50000-1-1-1-53+5/23-5/2-1+5    orthogonal lifted from C52⋊C4
ρ154-400-1-1-1-14-100001-41111    symplectic lifted from C5⋊C8, Schur index 2
ρ164-400-1-1-14-1-10000-411111    symplectic lifted from C5⋊C8, Schur index 2
ρ174-4003+5/23-5/2-1+5-1-1-1-50000111+5-3-5/2-3+5/21-5    symplectic faithful, Schur index 2
ρ184-400-1+5-1-53-5/2-1-13+5/2000011-3-5/21-51+5-3+5/2    symplectic faithful, Schur index 2
ρ194-400-1-5-1+53+5/2-1-13-5/2000011-3+5/21+51-5-3-5/2    symplectic faithful, Schur index 2
ρ204-4003-5/23+5/2-1-5-1-1-1+50000111-5-3+5/2-3-5/21+5    symplectic faithful, Schur index 2

Smallest permutation representation of C525C8
On 40 points
Generators in S40
(1 20 35 11 27)(2 36 28 21 12)(3 29 13 37 22)(4 14 23 30 38)(5 24 39 15 31)(6 40 32 17 16)(7 25 9 33 18)(8 10 19 26 34)
(1 35 27 20 11)(2 21 36 12 28)(3 13 22 29 37)(4 30 14 38 23)(5 39 31 24 15)(6 17 40 16 32)(7 9 18 25 33)(8 26 10 34 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)

G:=sub<Sym(40)| (1,20,35,11,27)(2,36,28,21,12)(3,29,13,37,22)(4,14,23,30,38)(5,24,39,15,31)(6,40,32,17,16)(7,25,9,33,18)(8,10,19,26,34), (1,35,27,20,11)(2,21,36,12,28)(3,13,22,29,37)(4,30,14,38,23)(5,39,31,24,15)(6,17,40,16,32)(7,9,18,25,33)(8,26,10,34,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)>;

G:=Group( (1,20,35,11,27)(2,36,28,21,12)(3,29,13,37,22)(4,14,23,30,38)(5,24,39,15,31)(6,40,32,17,16)(7,25,9,33,18)(8,10,19,26,34), (1,35,27,20,11)(2,21,36,12,28)(3,13,22,29,37)(4,30,14,38,23)(5,39,31,24,15)(6,17,40,16,32)(7,9,18,25,33)(8,26,10,34,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40) );

G=PermutationGroup([[(1,20,35,11,27),(2,36,28,21,12),(3,29,13,37,22),(4,14,23,30,38),(5,24,39,15,31),(6,40,32,17,16),(7,25,9,33,18),(8,10,19,26,34)], [(1,35,27,20,11),(2,21,36,12,28),(3,13,22,29,37),(4,30,14,38,23),(5,39,31,24,15),(6,17,40,16,32),(7,9,18,25,33),(8,26,10,34,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)]])

C525C8 is a maximal subgroup of
D10.2F5  C524M4(2)  C52⋊D8  C52⋊SD16  C52⋊Q16  C20.11F5  C528M4(2)  C5214M4(2)
C525C8 is a maximal quotient of
C525C16

Matrix representation of C525C8 in GL4(𝔽41) generated by

0700
35600
13363440
353710
,
40100
53500
37114034
271877
,
00401
19403934
30123012
10293012
G:=sub<GL(4,GF(41))| [0,35,13,35,7,6,36,37,0,0,34,1,0,0,40,0],[40,5,37,27,1,35,11,18,0,0,40,7,0,0,34,7],[0,19,30,10,0,40,12,29,40,39,30,30,1,34,12,12] >;

C525C8 in GAP, Magma, Sage, TeX

C_5^2\rtimes_5C_8
% in TeX

G:=Group("C5^2:5C8");
// GroupNames label

G:=SmallGroup(200,21);
// by ID

G=gap.SmallGroup(200,21);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,10,26,483,328,2004,2009]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^8=1,a*b=b*a,c*a*c^-1=a^2,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C525C8 in TeX
Character table of C525C8 in TeX

׿
×
𝔽